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Abstract. 
The main objective of this study is to develop an efficient multiscale coarse grid method which can ' 

be used as a competitive algorithm in studying composite materials and flow transport in strongly 
heterogeneous porous media.  On  one hand, we have explored the possibility of using adaptive 
mesh to reduce the modeling error introduced by the traditional moment average technique. On 
the other hand, we found that in the case of high ^Ect- ratio permeability tensor, the modeling       ; 
error in ignoring high order moments (3rd order or higher) could be very large.   To overcome     : ■ 
this difficulty, we have investigated an alternative approach that uses two-scale homogenization 
analysis to derive a coarse grid model in a systematic way. Finally, we have made some progress in 
developing numerical methods to solve multiscale nonlinear stochastic partial diiFerential equations       ,;: 
by using Wiener-Chaos expansions. These methods wiU reduce the problem of solving stochastic      f 
PDEs to solving a set of deterministic PDEs. This numerical method can be combined with our 
multiscale computational method, and can be used to compute accurately high order statistical^ 
quantites more efficiently than the traditional Monte-Carlo method. 
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I. Technical Accomplishments. 

(1) The over-sampling technique and its error analysis. 
One of the main difficulties in developing the multiscale computational methods is how to ef- 

fectively localize the equation governing the small scales. If we use artificial boundary conditions 
from the large scales, such as linear boundary conditions, it will create mismatch among the small 
scales across the boundaries of coarse grid elements. Our analysis [6, 7] indicates that the error 
appears as a resonance between the small physical scales of the medium and the mesh size. Indeed 
the error is given by the ratio between the two scales; it increases as the size of grid bloclra gets 
close to the small physical scales. We also show that the effect of different boundary conditions lies 
in a narrow region near the boundaries of grid blocks and it contributes to part of the resonance 
error. In [6], we introduced an over-sampling technique to remove the boundary layer effect. This 
is a very effective method that can be implemented easily for problems with many or continuous 
scales. This idea has recently been modified for the finite volume method and used in the new flow 
simulator code of Chevron. 

A consequence of the over-sampling method is that the resulting multiscale finite element method 
is no longer conforming. With Efendiev and Wu [5], we give a detailed analysis of the non- 
conforming error. Our analysis also reveals a new cell resonance error which is caused by the 
mismatch between the mesh size and the wavelength of the small scale. We show that the cell 
resonance error is of lower order and is difficult to observe in practice. 

(2), A mixed multiscale finite element method. 
Recently, in collaboration with Dr. Z. Chen [4], we have developed a mixed multiscale finite 

element method. The advantage of a mixed finite element formulation is that the velocity flux 
is locally conserved across element boundaries. This is a very important property in many flow 



simulations for large times. The violation of this local conservation property will lead to leakage 
of velocity fltix. This will deteriorate the accuracy of the numerical solution for long time compu- 
tations. This is the reason why mixed finite element methods are attractive for porous medium 
simulations. Our computational results have demonstrated convincingly that the mixed multiscale 
finite element method gives more accurate results for long time computations than the displacement 
multiscale finite element method. 

(3). A PDE-based adaptive mesh generator. 
In collaboration with Dr. Ceniceros [3], we has developed a new approach to generate a dynam- 

ically adaptive mesh for flows with singular layered structures. The use of well-resolved uniform 
meshes for this type of flows becomes prohibitively expensive. How to construct an effective moving 
meshes that can follow these singular layered structures dynamically is a very challenging problem. 
By solving a set of nonlinear elliptic equations, the mesh map is generated in a single step. The 
resulting adaptive method has the following attractive properties: (1) It is fast, with an optimal 
operation count 0{N), N is the number of grid points; (2) It can capture the dynoTOtcal evolution of 
singular structures without introducing artificial numerical diffusion; (3) It is highly accurate and 
stable. (4) It can be coupled easily with any existing PDE solver. We apply this dynamical moving 
mesh technique to study the evolution of an unstably stratified flow with three constant regions of 
densities connected by two thin layers. This is an extremely challenging problem. The flow develops 
very complex structure dynamically due to the Rayleigh-Taylor instability. The mesh effectively 
follows the flow throughout its complex evolution. The method is very stable and efficient during 
the entire computation. 

(4), Combining multiscale modeling with mesh adaptivity 
We have investigated the possibility of combining the multiscale finite element method with our 

PDE-based adaptive mesh generator. The adaptive mesh wiU be used to capture the dominant flow 
features, and the multiscale method will be used to capture the small scale effect withui each coarse 
grid element by using moment average techniques. This will provide an effective coarse grid method 
for two-phase flows in heterogeneous media. My Ph.D. student, Andy Westhead, is now working 
at Exxon-Mobil as a interm for the second time to test this idea for realistic flow simulations. We 
are hopeful that this will lead to an improved accuracy in the upscaling model. 

(5). Two-scale ainalysis for incompressible flows 
A very common phenomenon in mechanics, physics, chemistry and engineering is that processes 

contain a wide range of spatial and temporal scales, which lead to rapidly varying structure in space 
and time. These include phase transitions, porous media flows, composite materials, acoustic waves 
and turbulent. The analysis of flows with rapidly varying structure is a very complex mathematical 
problem. Direct numerical simulations of these problems require tremendous amount of computer 
memory and CPU time which can easily exceed the limits of modern computing resources. There- 
fore, it is desirable to develop numerical methods which capture the effect of small scales on large 
scales using a relatively coarse grid. 

Multiscale analysis for periodic structures (homogenization) has emerged as one of the successful 
techniques for these difficult problems with rapidly varying structure. The simpliest multiscale 
analysis involves two scales. The first scale describes macroscopic quantities or slow variables. The 
second scale describes microscopic quantities or fast variables. Homogenization theory studies the 
relation between microscopic and macroscopic scales and provides effective equationes for macro- 
scopic quantities. It has been very successful in solving elliptic and parabolical problems with 
rapidly oscillating coefiicients. But ther has been only limited success in applying homogenization 
theory to hyperbolic problems. 



Analysis of propagation of oscillations in incompressible Euler and Navier-Stokes equations has 
proved to be an extremely chanllenging problem. The pioneering work in this area was done by 
Mclaughlin, Papanicolaou and Pironneau in their 1985 paper [12]. By using multiple scale analysis, 
they tried to obtain the homogenized equation for the incompressible Euler equation under the 
^sumption that the highly oscillating part of the velocity field is transported only by the mean 
flow. This crucial assumption simplifies their multiscale analysis. However, this assumption is not 
very physical. In fact, there is no uniqueness of the cell problem they formulated. The existence of 
the cell problem is also open. Although a number of researchers have tried to resolve this difficulty, 
it is still one of the outstanding open questions in applied mathematics. 

Recently, we have made some progress in deriving a homogenized equation for incompressible 
Euler equations in two and three space dimensions. The key idea is to perform multiscale expansions 
in the Lagrangian variable. The incompressible Euler equation is reduced to a nonhnear coupled 
system of the transport equation, which characterizes the flow map, and the elliptic problem for 
the stream function. Our multiscale analysis is carried out using this framework. This nonlinear 
coupled system decribes the relation between large scales and small scales. It provides a beautiful 
mathematical model to understand complicated phenomenon of flows. 

Our homogenization theory for the incompressible Euler equation with multi-scale initial data 
shows that the effect of small scale has only a local domain of influence. This enables us to 
develop an effective multiscale numerical method based on our asymptotic analysis which captures 
the correct large scale solution without making closure assumption. We plan to generalize our 
results to more general multiscale initial data without restrictive assumption on periodic structure 
and scale separation. We will also perform a number of numerical experiments to compare oiu: 
results with the well-resolved solution and with other existing methods. Ultimately, we want to 
demonstrate that this two-scale analysis can be used to capture the large time bebavier of the 
macroscopic solution for incompresssible Navier-Stokes equations. If true, this will provide an 
effective numerical method for computing multiscale solution of incompressible flows. 

(6). Numericod methods for solving stochastic PDEs 
In practice, there are many physical processes that are governed by stochastic PDEs. Examples 

include wave propagation and diffusion through heterogeneous random media and the randomly 
forced Navier-Stokes equations. One commonly used method is the Monte Carlo method in which 
we simulate the problem realization by realization, and then average the solutions over many 
realizations. In each realization, one has to use a fine mesh to resolve the smallest scales introduced 
by the random perturbation. And one needs to perform many realizations in order to obtain 
accurate approximations to various statistical properties. The number of realizations could range 
from a few thousands to a few hundred thousands for problems with large variance. 

Here we are interested in designing new type of numerical methods based on some well-known 
stochastic decompositions such as Karhunen-Loeve expansion [9], and Wiener-Chaos expansion [2]. 
Wiener-Chaos expansion represents any function u{t, x, Xt) depending on a stochastic process Xf 
by 

(1) U{t, X, Xt) = Y] -j=1pnit, x)Cn, 

where $„'s are Wick's polynomials (certain products of Hermite polynomials) which form a complete 
orthogonal basis of the probability functional space, and ^„(t, :c)'s are their deterministic coefiicients 
which are also computed by the inner product of u and ^„. 

The most attractive point in Wiener-Chaos expansions is that the randomness of a stochastic 
process has been separated from its deterministic features. Therefore, we are able to derive equa- 
tions for those deterministic coefiicients and solve them using the standard methods.   Once the 
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deterministic coefficients ^„(t,a;)'s are available, it is easy to recover the statistics of the solutions 
from these coefficients. For example, the mean of the solutions is simple the first coefficient ^o(*, x) 
in the expansion, and the variance is computed as: 

^(V')=EN 
2 

It has been proved [11] that finite sum approximations of Wiener-Chaos expansions is accurate 
with an error of the order 0{e^t^+^/{N+l)\), where N is the number of terms in the Wiener-Chaos 
expansion. This suggests that if the Wiener-Chaos expansion is applied for a short time interval 
At, the approximation can achieve high accuracy. Based on this observation, we have designed a 
linear approximation scheme (with N = 0, which means only one linear term being used in the 
Wiener-Chaos expansion at every time interval with length At). 

It has been verified numerically that when the variance of the force term is not large, espe- 
cially when the fiuctuation ||(«')2 - E{{u'f)\\ is small, this hnear scheme can give very accurate 
approximations to the statistical property. However, this linear scheme becomes insufficient when 
II(«^)^ — E{{u')^)\\ is not small. In this case, it is necessary to include more terms (higher order 
Hermite polynomials) in the Wiener-Chaos expansion at every time interval to approximate the 
solution accurately. However, if we use the short time interval expansion as we did for the linear 
scheme, the number of Wiener-Chaos coefficients increases drastically since the nonlinearity of the 
equation brings all higher order coefficients, including the cross term coefficients between different 
time intervals. This could be computationally very expensive. 

To alleviate this difficulty, we propose the following remedy. On one hand, we would Uke to 
limit the number of the Wiener-Chaos coefficients by using higher order Wiener-Chaos expansion. 
On the other hand, we would like to remain the accuracy and flexibility of short time interval 
approximations. To this end, we divide time interval [0,t] into two subinterval [0,t-S] and [t-S,t], 
At <C (5 -C 1. The first subinterval corresponds to the earlier history of the Brownian motion which 
usually has small impact on the solution at the current time. The second subinterval corresponds to 
the short time contribution to the solution, which is not very smooth and requires high resolution. 
In both subintervals, we construct Wiener-Chaos expansions separately. Since there are only two 
subintervals, we can afford to compute the cross terms in the Wiener-Chaos expansions while 
retaining some higher order Wiener-Chaos expansions. Furthermore, the history term is relatively 
small and smooth. Only a small number of Wiener-Chaos coefficients are needed to obtain an 
accurate computation. Our preliminary results show that this strategy is both efficient and accurate. 

(7). An Efficient Domain Decomposition Preconditioner for Multiscale Elliptic Prob- 
lems with High Aspect Ratios 

Many problems of fundamental and practical importance have multiple-scale solutions. Typi- 
cal examples include transport of flows in strongly heterogeneous media and heat conduction in 
composite materials. When applying conventional FEM domain decomposition methods to these 
problems using linear or polynomial interpolations, the convergence rate deteriorates because the 
coarse grid solver does not account for fine scale heterogeneous features. To attain a satisfac- 
tory convergence rate it is therefore important to construct a coarse grid solver which reflects the 
smaU scale structures. Such a solver has been developed by Hou et al. [6, 7] who introduced the 
Multiscale Finite Element Method (MsFEM). The basic idea behind the MsFEM is to construct 
base functions which are adaptive to the local property of the differential operator and contain the 
important subgrid information. 

An important property with the MsFEM solver is that the coarse approximation space is "gen- 
eralized" discrete harmonic with respect to the physical elliptic operator that contains small scale 
coefficients. Prom a theoretical point of view, this property implies that the MsFEM solver is in 
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a sense optimal within a general class of coarse solvers. Furthermore it allows us to interpret the 
MsFEM solver as a natural extension of eg. linear finite elements to problems which include highly- 
oscillatory coefficients. In particular, if the physical domain is partitioned into triangles or tetrahe- 
drons and the elliptic coefiicients are quasi-homogeneous, i.e. constant on each coarse grid element, 
then the corresponding MsFEM using linear boundary conditions to construct the multiscale base 
functions simply reduces to standard linear finite elements. 

In [1] we develop, analyze and test a nonoverlapping domain decomposition preconditioner with 
the MsFEM solver as the coarse grid solver. The proposed preconditioner falls into the category of 
Schwarz methods, and the main steps in our analysis is based on the general abstract framework 
for the analysis of Schwarz methods. We first demonstrate that the MsFEM induces an ideal 
nonoverlapping domain decomposition preconditioner in ID which converges in one iteration. In 
2D and 3D the ability to select proper boundary conditions for the multiscale base fimctions 
will be important to achieve a fast convergence rate. In this paper, we only consider the case 
when the MsFEM solver is the "oscillatory extension" of linear finite elements. Our analysis 
shows that the proposed preconditioner gives the same rate of convergence for general elliptic 
problems with oscillatory coefficients as standard nonoverlapping domain decomposition methods 
using conventional coarse solvers achieve for elliptic problems with quasi-homogeneous coefficients. 
Moreover, we show that the condition number has only a relatively weak dependence on the local 
oscillatory coefficients and their aspect ratio. 

We perform a series of numerical experiments to test the performance of our preconditioner 
for elliptic partial differential equations in two dimensions with highly oscillatory coefficients. We 
choose the coarse grid and the boundary conditions for the multiscale base functions so that the 
MsFEM solver is the "oscillatory extension" of bihnear finite elements. The elliptic coefficient 
function is chosen to be the product of a quasi-homogeneous coefficient function and a periodic 
osciUatory coefficient function. We demonstrate that the MsFEM induced preconditioner proposed 
in this paper shows a logarithmic dependence on the mesh ratio H/h and is almost insensitive to the 
local aspect ratios (for aspect ratios as high as 10^°). This confirms that the rate of convergence 
of our preconditioner for general elliptic problems with osciUatory coefficients is essentially the 
same as standard nonoverlapping domain decomposition methods using conventional coarse solvers 
achieve for elliptic problems with quasi-homogeneous coefficients. We compare our preconditioner 
with the preconditioners obtained by replacing the MsFEM solver with the linear and bihnear 
finite element solvers. The convergence behavior for these preconditioners deteriorates rapidly if 
the aspect ratio within the coarse grid elements blows up. As we are not aware of any other coarse 
solvers which successfully handles high aspect ratios, the linear and bilinear finite element solvers 
serve the purpose of illustrating the need for coarse solvers which can handle highly oscillatory 
coefficients. 

(8). Singularity formation in 3D vortex sheets 
One of the classical examples of hydrodynamic instability occurs when two fluids are separated 

by a free surface across which the tangential velocity has a jump discontinuity. This is called Kelvin- 
Helmholtz instability. Kelvin-Helmholtz instability is a fundamental instability of incompressible 
fluid flow at high Reynolds number. The idealization of a shear layered flow m a vortex sheet 
separating two regions of potential fiow has often been used as a model to study mixing properties, 
boundary layers and coherent structures of fluids. 

In collaboration with my former Ph.D. studnet, Gang Hu, [8], we have studied singularity forma- 
tion of 3-D vortex sheets using a new approach. First, we derive a leading order approximation to the 
boundary integral equation governing the 3-D vortex sheet. This leading order equation captures 
the most singular contribution of the integral equation. Moreover, after applying a transformation 
to the physical variables, we found that this leading order 3-D vortex sheet equation de-generates 



into a two-dimensional vortex sheet equation in the direction of the tangential velocity jump. This 
rather surprising result confirms that the tangential velocity jump is the physical driving force of 
the vortex sheet singularities. We show that the singularity type of the three-dimensional problem 
is similar to that of the two-dimensional problem. 

In the March Issue of SIAM News (2002), there is a long feature article describing Yizhao's work 
with his Ph.D. student in studying singularity formation of three dimensional vortex sheets. The 
article concludes that "the new results of Hou and his colleagues have brought 'the ever distant 
goal' of understanding turbulence and hydrodynamic instability at least a few steps closer". 
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